Novel C60-Based Building Blocks Derived from C₆₀²⁻ Anion

Emmanuel Allard, Jacques Delaunay, Fuyong Cheng, Jack Cousseau,*,† Jesus Ordúna, and Javier Garín*,[‡]

Laboratoire d'Inge´*nierie Mole*´*culaire et Mate*´*riaux Organiques, UMR CNRS 6501, Uni*V*ersite*´ *d'Angers, 2 Bd La*V*oisier, F-49045 Angers Cedex 01, France, and Departamento de Quı*´*mica Orga*´*nica, ICMA, Uni*V*ersidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain*

*jack.cousseau@uni*V*-angers.fr*

Received August 14, 2001

ABSTRACT

Reactions of chemically generated C₆₀²⁻ dianion with halo derivatives bearing a second functional group (halo, ester, ketone) give rise to new **organo C60 derivatives. Thus, the regioselective formation of 1,2- and 1,4-adducts is observed from long-chain halo derivatives, whereas using** 1,3-dihaloalkanes leads to 1,2-fused ring C₆₀ adducts. Such adducts may be used as new synthons in C₆₀ chemistry, thus leading to new **C60-based dyads, as exemplified by two examples.**

The chemical reactivity of C_{60}^{2-} dianion is a priori very attractive as a result of the potential properties of this ion as an electron donor, a nucleophile, or a Brönstedt base, as exemplified in a recent review.¹ Furthermore, C_{60}^{2-} appears as a very good complement to C_{60} , since C_{60} mainly reacts as an electron acceptor or an electrophile, as well as in various cycloaddition processes.² Therefore, C_{60} ²⁻ may play an important role in the search for new functionalized C_{60} derivatives. However, so far the chemistry of C_{60}^{2-} dianion has been mainly devoted to its alkylation through reaction of various halo derivatives RX.3

We have recently shown that, after generation of C_{60}^{2-} via a chemical reduction of C_{60} using sodium propanethiolate

(2) Hirsch, A. *The Chemistry of Fullerenes*; Thieme: Stuttgart, 1994. (3) (a) Caron, C.; Subramanian, R.; D'Souza, F.; Kim, J.; Kutner, W.; Jones, M. T.; Kadish, K. M. *J. Am. Chem*. *Soc.* **¹⁹⁹³**, *¹¹⁵*, 8505-8506. (b) Subramanian, R.; Kadish, K. M.; Vijayashree, M. N.; Gao, X.; Jones, M. T.; Miller, M. D.; Krause, K. L.; Suenobu, T.; Fukuzumi, S. *J. Phys. Chem*. $C_3H_7S^-Na^+$ in acetonitrile, the alkylation reactions of C_{60}^2 ⁻ exhibit the following features: 4 (i) The formation of 1,2- and 1,4-dialkyl adducts $C_{60}R_2$ obtained from R-I derivatives (R $=$ Me, Et, *n*Bu) is highly regioselective, the relative molar ratio 1,2/1,4 being ca. 9/1 when $R = Me$ and ca. 1/9 with other alkyl groups, this regiochemistry appearing to be much more selective than when C_{60}^{2-} dianion is electrochemically generated.^{3a} (ii) With diiodo derivatives I-(CH₂)_n-I ($n = 3$) or 4), only the cyclic 1,2-adducts $C_{60}(CH_2)_3$ or $C_{60}(CH_2)_4$ are formed in high yields (ca. 80%).4

ORGANIC LETTERS

2001 Vol. 3, No. 22 ³⁵⁰³-**³⁵⁰⁶**

These results have prompted us to study an extension of this process starting from halo-derivatives that possess a second functional group, to check if this method may open up a new way for functionalizing fullerene C_{60} . Here we

[†] Université d'Angers.

[‡] Universidad de Zaragoza.

⁽¹⁾ Reed, C. A.; Bolskar, R. D. *Chem. Re*V. **²⁰⁰⁰**, *¹⁰⁰*, 1075-1120.

¹⁹⁹⁶, *¹⁰⁰*, 16327-16335. (c) Fukuzumi, S.; Suenobu, T.; Hirasaka, T.; Arakawa, R.; Kadish, K. M. *J. Am. Chem. Soc*. **¹⁹⁹⁸**, *¹²⁰*, 9220-9227. (d) Kadish, K. M.; Gao, X.; Van Caemelbecke, E.; Hirasaka, T.; Suenobu, T.; Fukuzumi, S. *J. Phys. Chem. A* **¹⁹⁹⁸**, *¹⁰²*, 3898-3906.

⁽⁴⁾ Allard, E.; Rivière, L.; Delaunay, J.; Dubois, D.; Cousseau, J. *Tetrahedron Lett*. **¹⁹⁹⁹**, *⁴⁰*, 7223-7226.

report the results that we have obtained from $α, ω$ -dihaloalkanes, haloketone, and haloester derivatives.

At first we studied the reaction of 1-chloro-3-iodopropane $Cl(CH₂)₃I$ **1** with $C₆₀²⁻$, expecting to obtain the adduct $C_{60}[(CH₂)₃Cl)]₂$ because of the poorer leaving group ability of Cl compared to I. In fact only the formation of cyclic adduct $C_{60}(CH_2)_3$ **2** in very good yield was observed. According to the mechanism proposed by Kadish et al., $3b$,c this result suggests that the final S_N2 reaction, which follows the formation of the intermediate anion $[C₆₀(CH₂)₃Cl]$ ⁻, is a fast intramolecular ring closure, owing to favorable entropic factors, instead of a reaction with a second molecule of Cl- (CH2)3I **1** (Scheme 1).

However, in the same experimental conditions, 5 longer chain α , ω -dihaloalkanes such as Cl(CH₂)₆I **3** or I(CH₂)₆I **4** lead (ca. 20-30% yield) to the expected adducts $C_{60}[(CH_2)_{6}$ - Cl_2 **5** and $\text{C}_{60}[\text{(CH}_2)_6\text{I}]_2$ **6**, the 1,4-compound being largely predominant (molecular ratios $5b/5a$ and $6b/6a \ge 90/10$) (Scheme 1).

The structures of 1,2- and 1,4-isomeric adducts were unambiguously assigned from NMR spectra of the corresponding mixtures $(5a + 5b)$ and $(6a + 6b)$. In 1,4-adducts, the hydrogen atoms of $CH₂$ groups bonded to the $C₆₀$ core are diastereotopic and characterized by an AB system in ^IH spectra due to the chirality of C1 and C4 atoms in C_{60} .^{3d} On the opposite, in 1,2-adducts C1 and C2 atoms are equivalent, and a single triplet is then ascribed to the same $CH₂$ groups (see Figure 1). These structural assignments were confirmed by ${}^{1}H-{}^{13}C$ 2D correlations, as previously observed.⁴
From these latter results, our interest has focused

From these latter results, our interest has focused on the reaction of halo derivatives bearing another function such as a ketone or an ester group. To compare the results, the molecular frames of these halo derivatives were chosen to be similar to those of compounds 1 and $3-4$. Thus C_{60}^{2-}

anion was reacted with 1,3-dibromo-propanone $BrCH₂-CO CH₂Br$ **7** and with ethyl halo-hexanoates $X-(CH₂)₅-CO₂Et$ **9** $(X = Br)$ and **10** $(X = I)$.

The reactions occurred as expected, respectively leading (Scheme 2) to the cyclic ketone **8** (ca. 25% yield) ⁶ and to

the diesters **¹¹** (ca. 15% yield, molecular ratio **11b**/**11a** > 90/10 determined from NMR as for adducts **5** and **6**); both esters **9** and **10** give rise to identical results.

All new C_{60} adducts (mixtures of isomers $5, 6, 11$ or ketone **8**) were isolated by column chromatography, and their purity was confirmed by ¹³C spectra (no detection of pristine C_{60}). (See Figure 2)

The adducts **8** and **11** offer further possibilities in synthesis as a result of the presence of the ketone and ester groups. In this field, our first results come from ketone **8**, which was easily reduced into the corresponding alcohol **12** (ca. 50%

⁽⁵⁾ **General Experimental Conditions.** Nitrogen is bubbled for 1 h in yield) upon reaction with $DIBAL-H$ in toluene at room a suspension of 50 mg of C₆₀ in 40 mL of dry acetonitrile, then excess $C_3H_7\hat{S}^-Na^+$ is added in this medium, and the whole mixture is stirred under nitrogen at room temperature for 24 h. A deep red color is progressively developed in the liquid phase during this period as a result of the generation of C_{60}^{2-} . Halo derivative in large excess, previously degassed, is then added through a syringe into the reaction mixture, which is stirred at room temperature under nitrogen for a further 24 h period. The reaction mixture is filtered off, and the remaining solid is washed with diethyl ether. This crude solid is analyzed by TLC (eluent, carbon disulfide), HPLC (eluent, toluene), and ¹H NMR (solvent, $CS_2-C_6D_6$ or CDCl₃). The adducts were separated and purified by column chromatography.

⁽⁶⁾ Commercially available 1,3-dibromopropanone **7** must be carefully purified (distillation) before use to separate 1-bromopropanone and 1,1 dibromopropanone, which may be present in minor proportions $(5-10\%)$. In particular, we have noticed that, in addition to cyclic ketone **8**, the methano-derivative C₆₀>CHCOCH₃ is formed up to ~15% from the commercial 1,3-dibromopropanone but only as traces $(1-3\%)$ from the distilled one. The formation of this methano-derivative is likely to be ascribed to reaction of 1,1-dibromopropanone with C_{60}^{2-} (see Boulas, P., Zuo, Y., Echegoyen, L. *Chem. Commun*. **¹⁹⁹⁶**, 1547-1548).

temperature, as already observed from a 1,2-fused cyclohexanone- C_{60} derivative.⁷

This alcohol **12** readily reacted with a tetrathiafulvalene (TTF) analogue bearing a carboxylic acid function in a short or a long chain, respectively **13a** or **13b**, ⁸ leading to very good yields (80%) of the corresponding dyads **14a** and **14b** (Scheme 3).

 a (i) excess DIBAl-H (10 equiv), toluene, 24 h, rt, then acidic (aq HCl 1 M) hydrolysis; (ii) **13a** or **13b**, toluene, DMAP, DCC, rt, 24 h.

The redox properties of the new compounds **5**, **6**, **8**, **12**, and **14** were studied electrochemically in *o*-dichlorobenzene or toluene/acetonitrile solutions. Well-resolved and reversible cyclic voltammograms were observed in all cases.

As expected, compounds **5**, **6**, **8**, and **12** exhibit more negative reduction potentials than C_{60} because of the loss of a carbon-carbon double bond.9 The same trend is observed in the case of dyads **14a** and **14b**, their reduction potentials being identical and apparently not dependent on the moiety attached to the C_{60} core. However, these two dyads exhibit more positive oxidation potentials than the parent TTFs **13a**

^a Experimental conditions: *o*-dichlorobenzene or toluene/MeCN (3/1) as indicated, working electrode, Pt, $E_{1/2}$ (V) vs Fc^+/Fc , nBu_4PF_6 (0.05 M), 100 mV s-1. *^b o*-Dichlorobenzene. *^c* Toluene/MeCN.

and $13b$, whereas other comparable C_{60} -TTF dyads were reported to display the same oxidation potentials as their starting TTFs.10 Despite this particular result and by comparison with other studies,^{10,12a} any important electronic interaction is unlikely to be considered in dyads **14a** and **14b** in their ground state, as can also be expected from their cyclic voltammograms showing usual characteristic patterns for C60 and TTF units (see Figure 3, **14a**).

In conclusion, these results clearly show the importance of C_{60}^{2-} dianion as a starting compound for functionalizing C_{60} . The high versatility of this ion versus various halo derivatives strongly emerges from this work, giving rise to new organo- C_{60} derivatives 5, 6, 8, and 12, which are difficult

⁽⁷⁾ An, Y.-Z.; Anderson, J. L., Rubin, Y. *J. Org. Chem*. **¹⁹⁹³**, *⁵⁸*, 4799- 4801.

⁽⁸⁾ The synthesis of these two TTF analogues **13a** and **13b** will be reported elsewhere.

⁽⁹⁾ Suzuki, T.; Maruyama, Y.; Akasaka, T.; Ando, W.; Kobayashi, K.; Nagase, S. *J. Am. Chem. Soc*. **¹⁹⁹⁴**, *116,* ¹³⁵⁹-1363. (b) Echegoyen, L.; Echegoyen, L. E. *Acc. Chem. Res.* **¹⁹⁹⁸**, *³¹*, 593-601.

⁽¹⁰⁾ Simonsen, K. B.; Konovalov, V. V.; Konovalova, T. A.; Kawai, T.; Cava, M. P.; Kispert, L. D.; Metzger, R. M., Becher, J. *J. Chem. Soc*., *Perkin Trans. 2* **¹⁹⁹⁹**, 657-665.

Figure 3. Cyclic voltammogram of the dyad **14a**.

to prepare by other ways.11 In particular, compounds **8** and **12** may be considered as promising new building blocks in C_{60} chemistry, especially in the design of new C_{60} -based materials. Thus, from compound 12 , new C_{60} -based dyads **14** are readily obtained, which indicates that our methodology may complement other synthetic strategies in this field.^{10,12} Photophysical properties of these dyads **14** are currently under study, as well as their NLO properties.

Acknowledgment. The authors gratefully acknowledge Dr. D. Dubois and S.C.A.S. (University of Angers) for their contribution to this work, respectively, in HPLC and in spectroscopic analyses.

OL0101786

(12) (a) Llacay, J.; Veciana, J.; Vidal-Gancedo, J.; Bourdelande, J. L.; Gonzalez-Moreno, R.; Rovira, C*. J Org. Chem.* **¹⁹⁹⁸**, *⁶³*, 5201-5210. (b) Herranz, M. A.; Martin, N. *Org. Lett*. **¹⁹⁹⁹**, *¹*, 2005-2007. (c) Guldi, D. M.; Gonzalez, S.; Martin, N.; Anton, A.; Garin, J.; Orduna, J. *J. Org. Chem*. **²⁰⁰⁰**, *⁶⁵*, 1978-1983.

⁽¹¹⁾ **Selected Data**. Compound **5b**: MALDI-TOF MS 958.0 (M-•), calcd 958.13; 1H NMR (500 MHz) *^δ* 1.61-1.65 (m, 8H), 1.81 (m, 4H), 2.29 (m, 4H), 2.90 (m, 2H), 2.99 (m, 2H), 3.46 (t, 4H, $J = 6.4$ Hz); UV-vis (C₆H₄-Cl2) 443 nm (broad). Compound **6b**: MALDI-TOF MS 1141.95 (M-•), calcd. 1142.0; ¹H NMR (500 MHz) δ 1.55-1.59 (m, 4H), 1.61-1.68 (m, 4H), 1.87 (m, 4H), 2.27 (m, 4H), 2.89 ((m, 2H), 2.99 (m, 2H), 3.14 (t, 4H, $J = 6.9$ Hz); UV-vis ($C_6H_4Cl_2$) 441 nm (broad). Compound 8: MALDI-TOF MS 776.03 (M+•), calcd 776.03; 1H NMR (500 MHz) *δ* 4.17(s); 13C NMR (125.75 MHz) *δ* 49.6, 64.5, 135.1, 140.5, 142.2, 142.3, 142.4, 143.0, 143.5, 144.9, 145.4, 145.7, 145.8, 146.1, 146.6, 146.6, 147.9, 155.9, 207.9; UV-vis (C6H4Cl2) 433 nm. Compound **¹²**: MALDI-TOF MS 778.02 (M+•), calcd 778.04; 1H NMR (500 MHz) *^δ* 1.89 (broad s, 1H), 3.63-3.70 (m,

⁴H), 5.28 (m, 1H); UV (CH₂Cl₂) 431 nm; ¹³C NMR (125.75 MHz) d 51.5, 69.9, 73.0, 135.1, 136.5, 140.3, 141.9, 142.2, 142.3, 142.4, 142.4, 142.8, 143.4, 144.7, 144.9, 145.5, 145.5, 145.7, 145.8, 145.9, 146.0, 146.1, 146.2, 146.3, 146.4, 146.4, 147.5, 157.5, 157.5. Compound **14a**: MALDI-TOF MS 1304.03 (M⁺*), calcd 1304.02; UV (CH₂Cl₂) 430, 300, 255 nm; ¹H NMR (500 MHz/CDCl3) *^δ* 0.9 (t, 6H), 1.28-1.39 (m, 8H), 1.54-1.60 (m, 4H), 2.44 (s, 3H), 2.72-2.76 (m, 4H), 3.69 (s, 2H), 3.91 (dd, 2H), 4.07 (d, 2H), 6.27 (s, 1H). Compound **14b** : MALDI-TOF MS 1429.9 (M+•) calcd 1430.1; UV (CH₂Cl₂) 430, 300, 255 nm; ¹H NMR (500 MHZ/CDCl₃) d 0.9 (t, 6H), 1.23-1.40 (m, 20 H), 1.60-1.64 (m, 6H), 1.81 (m, 2H), 2.40 (s, 3H), 2.58 (t, 2H), 2.76-2.84 (m, 6H), 3.92 (dd, 2H), 3.96 (d, 2H), 6.24 (s, 1H).